Solution - Simplification or other simple results
Step by Step Solution
Step 1 :
Equation at the end of step 1 :
((27 • (x3)) - (2•3•23x2)) - 144xStep 2 :
Equation at the end of step 2 :
  (33x3 -  (2•3•23x2)) -  144x
Step 3 :
Step 4 :
Pulling out like terms :
 4.1     Pull out like factors :
   27x3 - 138x2 - 144x  =   3x • (9x2 - 46x - 48) 
Trying to factor by splitting the middle term
 4.2     Factoring  9x2 - 46x - 48 
 The first term is,  9x2  its coefficient is  9 .
The middle term is,  -46x  its coefficient is  -46 .
The last term, "the constant", is  -48 
Step-1 : Multiply the coefficient of the first term by the constant   9 • -48 = -432 
Step-2 : Find two factors of  -432  whose sum equals the coefficient of the middle term, which is   -46 .
| -432 | + | 1 | = | -431 | ||
| -216 | + | 2 | = | -214 | ||
| -144 | + | 3 | = | -141 | ||
| -108 | + | 4 | = | -104 | ||
| -72 | + | 6 | = | -66 | ||
| -54 | + | 8 | = | -46 | That's it | 
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -54  and  8 
                     9x2 - 54x + 8x - 48
Step-4 : Add up the first 2 terms, pulling out like factors :
                    9x • (x-6)
              Add up the last 2 terms, pulling out common factors :
                    8 • (x-6)
 Step-5 : Add up the four terms of step 4 :
                    (9x+8)  •  (x-6)
             Which is the desired factorization
Final result :
  3x • (x - 6) • (9x + 8)
How did we do?
Please leave us feedback.